Total No. of Pages:3

Seat No.

Г

T.E. (Civil)-II (Semester-VI) Examination, 2013 GEOTECHNICAL ENGINEERING-II (Revised)

Sub. Code: 45543

Day and Date: Monday 13 - 05 - 2013

Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

- Instructions: 1) Question No.1 from Section-I and Question No.5 from Section-II are compulsory. Attempt any two questions from the remaining in each section.
 - 2) Figures to the right indicate full marks.
 - 3) Make assumptions wherever necessary.
 - 4) Use of non-programmable calculator is allowed.

SECTION-I

Q1) All questions are compulsory:

 $[4 \times 5 = 20]$

- a) Explain the Rotary drilling.
- b) Differentiate between finite and infinite slope.
- c) How do you consider local shear effect in bearing capacity equation?
- d) What are the different types of settlements of footings?
- Q2) a) Discuss Friction circle method.

[5]

- b) A new canal is excavated to a depth of 5m below ground level, through a soil having the characteristics: $c = 14 \text{ kN/m}^2$; $\phi = 15^\circ$; e = 0.8; and G=2.7. The slope of bank is 1 in 1. Calculate the factor of safety w.r.t. cohesion when the canal suddenly and completely emptied. Take Sn = 0.083 for $\phi = 15^\circ$, and Sn = 0.122 for $\phi = 7.3^\circ$ [6]
- c) Explain the following terms:- [4]
 Representative and Non representative samples.
- Q3) a) Discuss the factors influencing bearing capacity of soil.

[5]

b) Using Terzaghi's theory determine the ultimate bearing capacity of a strip footing 1.5m wide resting on a saturated clay (Cu = 30 kN/m³; ϕ_u = 0 and γ_{sat} =20 kN/m³), at a depth of 2 m below ground level. The water table is also at a depth of 2 m below ground level. If the water table rises by 1 m, calculate the percentage reduction in the ultimate bearing capacity. For $\phi = \phi_u = 0^\circ$; Nc = 5.7, Nq = 1.0, Nr = 0

Q4) Write notes on (any three):

[15]

- a) Describe the advantages of open excavation.
- b) Causes of slope failure.
- c) Pressuremeter test.
- d) List the factors influencing settlement.

SECTION-II

Q5) All questions are compulsory:-

 $[4 \times 5=20]$

- a) When there is need of combined footing? Explain.
- b) What is group efficiency of pile group? Explain feld's rule.
- c) Draw the cross section of well foundation and name the different parts.
- d) Explain Vibroflotation.
- Q6) a) Explain the various factors to be considered in deciding the location and depth of shallow foundation. [6]
 - b) A trapezoidal footing is to be produced to support two square column of 30 cm and 50 cm sides respectively. Columns are 6 meters apart and the SBC of the soil is 400 kN/m². The bigger column carries 5000 kN and smaller carries 3000 kN load. Design a suitable size of the footing so that it does not extend beyond the faces of the columns. [9]

- Q7) a) Write a note on Negative skin friction. [6]
 b) 200 mm diameter, 8m long piles are used as foundation for a column in a uniform deposit of medium clay (unconfined compression strength = 1001) 1/2 and 1/2 and 1/2 and 1/2 are proposed in a column in a column.
 - uniform deposit of medium clay (unconfined compression strength = 100 kN/m² and adhesion factor = 0.9). There are nine piles arranged in a square pattern of 3 X 3. For a group efficiency = 1.0, find the spacing between the piles (neglect bearing).
- Q8) a) What are the advantages and disadvantages of caisson foundation over piles? [6]
 - b) Write note on under reamed pile. [5]
 - c) Name the techniques used in ground improvement. [4]

